The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential

نویسندگان

  • Marco Caliari
  • Peter Kandolf
  • Alexander Ostermann
  • Stefan Rainer
چکیده

The Leja method is a polynomial interpolation procedure that can be used to compute matrix functions. In particular, computing the action of the matrix exponential on a given vector is a typical application. This quantity is required, e.g., in exponential integrators. The Leja method essentially depends on three parameters: the scaling parameter, the location of the interpolation points, and the degree of interpolation. We present here a backward error analysis that allows us to determine these three parameters as a function of the prescribed accuracy. Additional aspects that are required for an efficient and reliable implementation are discussed. Numerical examples illustrating the performance of our Matlab code are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Scaling and Squaring Method for the Matrix Exponential Revisited

The scaling and squaring method is the most widely used method for computing the matrix exponential, not least because it is the method implemented in MATLAB’s expm function. The method scales the matrix by a power of 2 to reduce the norm to order 1, computes a Padé approximant to the matrix exponential, and then repeatedly squares to undo the effect of the scaling. We give a new backward error...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials

We have implemented a numerical code (ReLPM, Real Leja Points Method) for polynomial interpolation of the matrix exponential propagators exp (∆tA)v and φ(∆tA)v, φ(z) = (exp (z) − 1)/z. The ReLPM code is tested and compared with Krylov-based routines, on large scale sparse matrices arising from the spatial discretization of 2D and 3D advection-diffusion equations.

متن کامل

Computing the Fréchet Derivative of the Matrix Exponential, with an Application to Condition Number Estimation

The matrix exponential is a much-studied matrix function having many applications. The Fréchet derivative of the matrix exponential describes the first-order sensitivity of eA to perturbations in A and its norm determines a condition number for eA. Among the numerous methods for computing eA the scaling and squaring method is the most widely used. We show that the implementation of the method i...

متن کامل

Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm

A popular method for computing the matrix logarithm is the inverse scaling and squaring method, which essentially carries out the steps of the scaling and squaring method for the matrix exponential in reverse order. Here we make several improvements to the method, putting its development on a par with our recent version [SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989] of the scaling and squ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016